Coursera lecture summary
![](https://blog.kakaocdn.net/dn/bc3g5w/btr611rvBYa/e40FCGc0w4S2ki8kumCTV1/img.png)
Cost function intuition 1
When \theta_1 = 1 = 1, we get a slope of 1 which goes through every single data point in our model. Conversely, when \theta_1 = 0.5, we see the vertical distance from our fit to the data points increase.
'Machine Learning' 카테고리의 다른 글
[논문리뷰]Time Series Forecasting With Deep Learning A Survey (0) | 2023.04.02 |
---|---|
데이터처리 파이프라인 프레임워크 (0) | 2023.03.31 |
Linear regression with one variable - Cost function (0) | 2023.03.31 |
Linear regression with one variable - Model Representation (0) | 2023.03.31 |
Supervised Learning & Unsupervised Learning (0) | 2023.03.31 |